On infinite dimensional uniform smoothness of Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 97-105
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
Classification :
46B20, 47H10
Keywords: Banach space; nearly uniform smoothness; finite dimensional decomposition; Banach-Saks property; fixed point property
Keywords: Banach space; nearly uniform smoothness; finite dimensional decomposition; Banach-Saks property; fixed point property
@article{CMUC_1999__40_1_a6,
author = {Prus, Stanis{\l}aw},
title = {On infinite dimensional uniform smoothness of {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {97--105},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1999},
mrnumber = {1715204},
zbl = {1060.46504},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a6/}
}
TY - JOUR AU - Prus, Stanisław TI - On infinite dimensional uniform smoothness of Banach spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 97 EP - 105 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a6/ LA - en ID - CMUC_1999__40_1_a6 ER -
Prus, Stanisław. On infinite dimensional uniform smoothness of Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a6/