Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 53-69.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We characterize the class of weights, invariant under dilations, for which a modified fractional integral operator $I_\alpha $ maps weak weighted Orlicz$-\phi $ spaces into appropriate weighted versions of the spaces $BMO_\psi $, where $\psi (t)=t^{\alpha /n}\phi ^{-1}(1/t)$. This generalizes known results about boundedness of $I_\alpha $ from weak $L^p$ into Lipschitz spaces for $p>n/\alpha $ and from weak $L^{n/\alpha }$ into $BMO$. It turns out that the class of weights corresponding to $I_\alpha $ acting on weak$-L_\phi $ for $\phi $ of lower type equal or greater than $n/\alpha $, is the same as the one solving the problem for weak$-L^p$ with $p$ the lower index of Orlicz-Maligranda of $\phi $, namely $\omega ^{p'}$ belongs to the $A_1$ class of Muckenhoupt.
Classification : 26A33, 42B25, 46E30, 47G10
Keywords: theory of weights; Orlicz spaces; $BMO$ spaces; fractional integrals
@article{CMUC_1999__40_1_a4,
     author = {Harboure, E. and Salinas, O. and Viviani, B.},
     title = {Relations between weighted {Orlicz} and $BMO_\phi$ spaces through fractional integrals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {53--69},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1999},
     mrnumber = {1715202},
     zbl = {1060.46509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/}
}
TY  - JOUR
AU  - Harboure, E.
AU  - Salinas, O.
AU  - Viviani, B.
TI  - Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 53
EP  - 69
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/
LA  - en
ID  - CMUC_1999__40_1_a4
ER  - 
%0 Journal Article
%A Harboure, E.
%A Salinas, O.
%A Viviani, B.
%T Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 53-69
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/
%G en
%F CMUC_1999__40_1_a4
Harboure, E.; Salinas, O.; Viviani, B. Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/