Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 53-69
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We characterize the class of weights, invariant under dilations, for which a modified fractional integral operator $I_\alpha $ maps weak weighted Orlicz$-\phi $ spaces into appropriate weighted versions of the spaces $BMO_\psi $, where $\psi (t)=t^{\alpha /n}\phi ^{-1}(1/t)$. This generalizes known results about boundedness of $I_\alpha $ from weak $L^p$ into Lipschitz spaces for $p>n/\alpha $ and from weak $L^{n/\alpha }$ into $BMO$. It turns out that the class of weights corresponding to $I_\alpha $ acting on weak$-L_\phi $ for $\phi $ of lower type equal or greater than $n/\alpha $, is the same as the one solving the problem for weak$-L^p$ with $p$ the lower index of Orlicz-Maligranda of $\phi $, namely $\omega ^{p'}$ belongs to the $A_1$ class of Muckenhoupt.
Classification :
26A33, 42B25, 46E30, 47G10
Keywords: theory of weights; Orlicz spaces; $BMO$ spaces; fractional integrals
Keywords: theory of weights; Orlicz spaces; $BMO$ spaces; fractional integrals
@article{CMUC_1999__40_1_a4,
author = {Harboure, E. and Salinas, O. and Viviani, B.},
title = {Relations between weighted {Orlicz} and $BMO_\phi$ spaces through fractional integrals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {53--69},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1999},
mrnumber = {1715202},
zbl = {1060.46509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/}
}
TY - JOUR AU - Harboure, E. AU - Salinas, O. AU - Viviani, B. TI - Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 53 EP - 69 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/ LA - en ID - CMUC_1999__40_1_a4 ER -
%0 Journal Article %A Harboure, E. %A Salinas, O. %A Viviani, B. %T Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals %J Commentationes Mathematicae Universitatis Carolinae %D 1999 %P 53-69 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/ %G en %F CMUC_1999__40_1_a4
Harboure, E.; Salinas, O.; Viviani, B. Relations between weighted Orlicz and $BMO_\phi$ spaces through fractional integrals. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a4/