Directional moduli of rotundity and smoothness
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 39-51
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.
Classification :
46B03, 46B20
Keywords: uniform rotundity; uniform smoothness; moduli of power type; superreflexive
Keywords: uniform rotundity; uniform smoothness; moduli of power type; superreflexive
@article{CMUC_1999__40_1_a3,
author = {Bartlett, Michael O. and Giles, John R. and Vanderwerff, Jon D.},
title = {Directional moduli of rotundity and smoothness},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {39--51},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1999},
mrnumber = {1715201},
zbl = {1060.46501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a3/}
}
TY - JOUR AU - Bartlett, Michael O. AU - Giles, John R. AU - Vanderwerff, Jon D. TI - Directional moduli of rotundity and smoothness JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 39 EP - 51 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a3/ LA - en ID - CMUC_1999__40_1_a3 ER -
%0 Journal Article %A Bartlett, Michael O. %A Giles, John R. %A Vanderwerff, Jon D. %T Directional moduli of rotundity and smoothness %J Commentationes Mathematicae Universitatis Carolinae %D 1999 %P 39-51 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a3/ %G en %F CMUC_1999__40_1_a3
Bartlett, Michael O.; Giles, John R.; Vanderwerff, Jon D. Directional moduli of rotundity and smoothness. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a3/