Smooth graphs
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 187-199.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph $G$ on $\omega _1$ is called $\!{\omega}$-{\it smooth\/} if for each uncountable $W\subset \omega _1$, $G$ is isomorphic to $G[W\setminus W']$ for some finite $W'\subset W$. We show that in various models of ZFC if a graph $G$ is $\!{\omega}$-smooth, then $G$ is necessarily trivial, i.e\. either complete or empty. On the other hand, we prove that the existence of a non-trivial, $\!{\omega}$-smooth graph is also consistent with ZFC.
Classification : 03E05, 03E35
Keywords: graph; isomorphic subgraphs; independent result; Cohen; forcing; iterated forcing
@article{CMUC_1999__40_1_a14,
     author = {Soukup, L.},
     title = {Smooth graphs},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {187--199},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {1999},
     mrnumber = {1715212},
     zbl = {1060.03071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a14/}
}
TY  - JOUR
AU  - Soukup, L.
TI  - Smooth graphs
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1999
SP  - 187
EP  - 199
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a14/
LA  - en
ID  - CMUC_1999__40_1_a14
ER  - 
%0 Journal Article
%A Soukup, L.
%T Smooth graphs
%J Commentationes Mathematicae Universitatis Carolinae
%D 1999
%P 187-199
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a14/
%G en
%F CMUC_1999__40_1_a14
Soukup, L. Smooth graphs. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 187-199. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a14/