Equations with discontinuous nonlinear semimonotone operators
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 7-12
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of this paper is to present an existence theorem for the operator equation of Hammerstein type $x+KF(x)=0$ with the discontinuous semimonotone operator $F$. Then the result is used to prove the existence of solution of the equations of Urysohn type. Some examples in the theory of nonlinear equations in $L_p(\Omega )$ are given for illustration.
Classification :
45G10, 45N05, 47H15, 47H30, 47J05, 47N20
Keywords: semimonotone operators; uniformly convex Banach spaces
Keywords: semimonotone operators; uniformly convex Banach spaces
@article{CMUC_1999__40_1_a1,
author = {Buong, Nguyen},
title = {Equations with discontinuous nonlinear semimonotone operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {7--12},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1999},
mrnumber = {1715199},
zbl = {1060.47509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a1/}
}
Buong, Nguyen. Equations with discontinuous nonlinear semimonotone operators. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 7-12. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a1/