On the fusion problem for degenerate elliptic equations II
Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $F$ be a relatively closed subset of a Euclidean domain $\Omega$. We investigate when solutions $u$ to certain elliptic equations on $\Omega\setminus F$ are restrictions of solutions on all of $\Omega$. Specifically, we show that if $\partial F$ is not too large, and $u$ has a suitable decay rate near $F$, then $u$ can be so extended.
Classification :
28A78, 35J60, 35J70
Keywords: $\Cal A$-harmonic function; Hausdorff measure; Fusion problem
Keywords: $\Cal A$-harmonic function; Hausdorff measure; Fusion problem
@article{CMUC_1999__40_1_a0,
author = {Buckley, Stephen M. and Koskela, Pekka},
title = {On the fusion problem for degenerate elliptic equations {II}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--6},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {1999},
mrnumber = {1715198},
zbl = {1060.35511},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a0/}
}
TY - JOUR AU - Buckley, Stephen M. AU - Koskela, Pekka TI - On the fusion problem for degenerate elliptic equations II JO - Commentationes Mathematicae Universitatis Carolinae PY - 1999 SP - 1 EP - 6 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a0/ LA - en ID - CMUC_1999__40_1_a0 ER -
Buckley, Stephen M.; Koskela, Pekka. On the fusion problem for degenerate elliptic equations II. Commentationes Mathematicae Universitatis Carolinae, Tome 40 (1999) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/CMUC_1999__40_1_a0/