Classifications and characterizations of Baire-1 functions
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 733-748
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Kechris and Louveau in [5] classified the bounded Baire-1 functions, which are defined on a compact metric space $K$, to the subclasses $\Cal B_{1}^{\xi }(K)$, $\xi \omega_1$. In [8], for every ordinal $\xi \omega_{1}$ we define a new type of convergence for sequences of real-valued functions ($\xi $-uniformly pointwise) which is between uniform and pointwise convergence. In this paper using this type of convergence we obtain a classification of pointwise convergent sequences of continuous real-valued functions defined on a compact metric space $K$, and also we give a characterization of the classes $\Cal B_{1}^{\xi }(K)$, $1 \leq \xi \omega_{1}$.
Classification :
46E99, 54C30, 54C35, 54C50
Keywords: Baire-1 functions; convergence index; oscillation index; trees
Keywords: Baire-1 functions; convergence index; oscillation index; trees
@article{CMUC_1998__39_4_a8,
author = {Kiriakouli, P.},
title = {Classifications and characterizations of {Baire-1} functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {733--748},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {1998},
mrnumber = {1715462},
zbl = {1060.54506},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a8/}
}
TY - JOUR AU - Kiriakouli, P. TI - Classifications and characterizations of Baire-1 functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 733 EP - 748 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a8/ LA - en ID - CMUC_1998__39_4_a8 ER -
Kiriakouli, P. Classifications and characterizations of Baire-1 functions. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 733-748. http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a8/