Differentiability for minimizers of anisotropic integrals
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 685-696
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a function $u:\Omega \to \Bbb R^N$, $\Omega \subset \Bbb R^n$, minimizing the integral $\int_\Omega(|D_1 u|^2 + \dots +|D_{n-1}u|^2 +|D_n u|^p)\,dx$, $2(n+1)/(n+3)\leq p2$, where $D_i u = \partial u/ \partial x_i$, or some more general functional with the same behaviour; we prove the existence of second weak derivatives $D(D_1 u), \dots , D(D_{n-1} u) \in L^2$ and $D(D_n u) \in L^p$.
Classification :
35J50, 35J60, 49N60
Keywords: regularity; minimizers; integral functionals; anisotropic growth
Keywords: regularity; minimizers; integral functionals; anisotropic growth
@article{CMUC_1998__39_4_a4,
author = {Cavaliere, P. and D'Ottavio, A. and Leonetti, F. and Longobardi, M.},
title = {Differentiability for minimizers of anisotropic integrals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {685--696},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {1998},
mrnumber = {1715458},
zbl = {1060.49507},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a4/}
}
TY - JOUR AU - Cavaliere, P. AU - D'Ottavio, A. AU - Leonetti, F. AU - Longobardi, M. TI - Differentiability for minimizers of anisotropic integrals JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 685 EP - 696 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a4/ LA - en ID - CMUC_1998__39_4_a4 ER -
%0 Journal Article %A Cavaliere, P. %A D'Ottavio, A. %A Leonetti, F. %A Longobardi, M. %T Differentiability for minimizers of anisotropic integrals %J Commentationes Mathematicae Universitatis Carolinae %D 1998 %P 685-696 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a4/ %G en %F CMUC_1998__39_4_a4
Cavaliere, P.; D'Ottavio, A.; Leonetti, F.; Longobardi, M. Differentiability for minimizers of anisotropic integrals. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 685-696. http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a4/