The periodic problem for semilinear differential inclusions in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 671-684.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Sufficient conditions on the existence of periodic solutions for semilinear differential inclusions are given in general Banach space. In our approach we apply the technique of the translation operator along trajectories. Due to recent results it is possible to show that this operator is a so-called decomposable map and thus admissible for certain fixed point index theories for set-valued maps. Compactness conditions are formulated in terms of the Hausdorff measure of noncompactness.
Classification : 34A60, 34C25, 34G25, 47H11, 47N20
Keywords: periodic solutions; translation operator along trajectories; set-valued maps; $C_0$-semigroup; $R_\delta$-sets
@article{CMUC_1998__39_4_a3,
     author = {Bader, Ralf},
     title = {The periodic problem for semilinear differential inclusions in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {671--684},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1998},
     mrnumber = {1715457},
     zbl = {1060.34508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a3/}
}
TY  - JOUR
AU  - Bader, Ralf
TI  - The periodic problem for semilinear differential inclusions in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 671
EP  - 684
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a3/
LA  - en
ID  - CMUC_1998__39_4_a3
ER  - 
%0 Journal Article
%A Bader, Ralf
%T The periodic problem for semilinear differential inclusions in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 671-684
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a3/
%G en
%F CMUC_1998__39_4_a3
Bader, Ralf. The periodic problem for semilinear differential inclusions in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 671-684. http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a3/