On the homology of free Lie algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 661-669
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a principal ideal domain $R$ of characteristic zero, containing $1/2$, and a connected differential non-negatively graded free finite type $R$-module $V$, we prove that the natural arrow $ \Bbb{L} {F\kern -0.8pt H}(V) \rightarrow {F\kern -0.8pt H} \Bbb{L} (V)$ is an isomorphism of graded Lie algebras over $R$, and deduce thereby that the natural arrow ${U\kern -1pt F\kern -0.8pt H}\Bbb{L} (V) \rightarrow {F\kern -0.8pt H\kern -0.4pt U} \Bbb{L} (V)$ is an isomorphism of graded cocommutative Hopf algebras over $R$; as usual, $F$ stands for free part, $H$ for homology, $\Bbb{L}$ for free Lie algebra, and $U$ for universal enveloping algebra. Related facts and examples are also considered.
Classification :
17B01, 17B35, 17B55, 17B70
Keywords: differential graded Lie algebra; free Lie algebra on a differential graded module; universal enveloping algebra
Keywords: differential graded Lie algebra; free Lie algebra on a differential graded module; universal enveloping algebra
@article{CMUC_1998__39_4_a2,
author = {Popescu, Calin},
title = {On the homology of free {Lie} algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {661--669},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {1998},
mrnumber = {1715456},
zbl = {1059.17503},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a2/}
}
Popescu, Calin. On the homology of free Lie algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 661-669. http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a2/