Inverse distributions: the logarithmic case
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 785-795.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper it is proved that the distribution of the logarithmic series is not invertible while it is found to be invertible if corrected by a suitable affinity. The inverse distribution of the corrected logarithmic series is then derived. Moreover the asymptotic behaviour of the variance function of the logarithmic distribution is determined. It is also proved that the variance function of the inverse distribution of the corrected logarithmic distribution has a cubic asymptotic behaviour.
Classification : 60E05, 60F05, 62E10
Keywords: natural exponential family; Laplace transform; variance function
@article{CMUC_1998__39_4_a13,
     author = {Sacchetti, Dario},
     title = {Inverse distributions: the logarithmic case},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {785--795},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1998},
     mrnumber = {1715467},
     zbl = {1060.62504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a13/}
}
TY  - JOUR
AU  - Sacchetti, Dario
TI  - Inverse distributions: the logarithmic case
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 785
EP  - 795
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a13/
LA  - en
ID  - CMUC_1998__39_4_a13
ER  - 
%0 Journal Article
%A Sacchetti, Dario
%T Inverse distributions: the logarithmic case
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 785-795
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a13/
%G en
%F CMUC_1998__39_4_a13
Sacchetti, Dario. Inverse distributions: the logarithmic case. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 785-795. http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a13/