Representation theorem for convex effect algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 645-659.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.
Classification : 46A40, 46N50, 52A01, 81P10, 81R10, 82B03
Keywords: effect algebras; convex structures; ordered linear spaces
@article{CMUC_1998__39_4_a1,
     author = {Gudder, S. and Pulmannov\'a, S.},
     title = {Representation theorem for convex effect algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {645--659},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {1998},
     mrnumber = {1715455},
     zbl = {1060.81504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a1/}
}
TY  - JOUR
AU  - Gudder, S.
AU  - Pulmannová, S.
TI  - Representation theorem for convex effect algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 645
EP  - 659
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a1/
LA  - en
ID  - CMUC_1998__39_4_a1
ER  - 
%0 Journal Article
%A Gudder, S.
%A Pulmannová, S.
%T Representation theorem for convex effect algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 645-659
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a1/
%G en
%F CMUC_1998__39_4_a1
Gudder, S.; Pulmannová, S. Representation theorem for convex effect algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 4, pp. 645-659. http://geodesic.mathdoc.fr/item/CMUC_1998__39_4_a1/