On the positivity of semigroups of operators
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 483-489.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In a Banach space $E$, let $U(t)$ $\,(t>0)$ be a $C_0$-semigroup with generating operator $A$. For a cone $K\subseteq E$ with non-empty interior we show: $(\star)$ \quad $U(t)[K]\subseteq K$ $\,(t>0)$ holds if and only if $A$ is quasimonotone increasing with respect to $K$. On the other hand, if $A$ is not continuous, then there exists a regular cone $K\subseteq E$ such that $A$ is quasimonotone increasing, but $(\star)$ does not hold.
Classification : 47B65, 47D06
Keywords: semigroups of positive operators; quasimonotonicity
@article{CMUC_1998__39_3_a4,
     author = {Lemmert, Roland and Volkmann, Peter},
     title = {On the positivity of semigroups of operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {483--489},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1998},
     mrnumber = {1666770},
     zbl = {0970.47026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a4/}
}
TY  - JOUR
AU  - Lemmert, Roland
AU  - Volkmann, Peter
TI  - On the positivity of semigroups of operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 483
EP  - 489
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a4/
LA  - en
ID  - CMUC_1998__39_3_a4
ER  - 
%0 Journal Article
%A Lemmert, Roland
%A Volkmann, Peter
%T On the positivity of semigroups of operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 483-489
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a4/
%G en
%F CMUC_1998__39_3_a4
Lemmert, Roland; Volkmann, Peter. On the positivity of semigroups of operators. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 483-489. http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a4/