Linking the closure and orthogonality properties of perfect morphisms in a category
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 587-607.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define perfect morphisms to be those which are the pullback of their image under a given endofunctor. The interplay of these morphisms with other generalisations of perfect maps is investigated. In particular, closure operator theory is used to link closure and ortho\-go\-na\-lity properties of such morphisms. A number of detailed examples are given.
Classification : 18A20, 18B30, 54B30, 54C10
Keywords: perfect morphism; (pullback) closure operator; factorisation theory; orthogonal morphisms
@article{CMUC_1998__39_3_a14,
     author = {Holgate, David},
     title = {Linking the closure and orthogonality properties of perfect morphisms in a category},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {587--607},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1998},
     mrnumber = {1666810},
     zbl = {0970.18002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a14/}
}
TY  - JOUR
AU  - Holgate, David
TI  - Linking the closure and orthogonality properties of perfect morphisms in a category
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 587
EP  - 607
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a14/
LA  - en
ID  - CMUC_1998__39_3_a14
ER  - 
%0 Journal Article
%A Holgate, David
%T Linking the closure and orthogonality properties of perfect morphisms in a category
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 587-607
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a14/
%G en
%F CMUC_1998__39_3_a14
Holgate, David. Linking the closure and orthogonality properties of perfect morphisms in a category. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 587-607. http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a14/