The $\Cal L_\nu^{(\rho )}$-transformation on McBride's spaces of generalized functions
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 445-452.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An integral transform denoted by ${\Cal L}_{\nu }^{(\rho )}$ that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method.
Classification : 44A10, 44A15, 46F12
Keywords: Krätzel integral transformation; $L_p$-spaces; distributions
@article{CMUC_1998__39_3_a1,
     author = {Cruz-B\'aez, D. I. and Rodr{\'\i}guez, J.},
     title = {The $\Cal L_\nu^{(\rho )}$-transformation on {McBride's} spaces of generalized functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {445--452},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {1998},
     mrnumber = {1666833},
     zbl = {0971.44002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a1/}
}
TY  - JOUR
AU  - Cruz-Báez, D. I.
AU  - Rodríguez, J.
TI  - The $\Cal L_\nu^{(\rho )}$-transformation on McBride's spaces of generalized functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 445
EP  - 452
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a1/
LA  - en
ID  - CMUC_1998__39_3_a1
ER  - 
%0 Journal Article
%A Cruz-Báez, D. I.
%A Rodríguez, J.
%T The $\Cal L_\nu^{(\rho )}$-transformation on McBride's spaces of generalized functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 445-452
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a1/
%G en
%F CMUC_1998__39_3_a1
Cruz-Báez, D. I.; Rodríguez, J. The $\Cal L_\nu^{(\rho )}$-transformation on McBride's spaces of generalized functions. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 3, pp. 445-452. http://geodesic.mathdoc.fr/item/CMUC_1998__39_3_a1/