$\omega$H-sets and cardinal invariants
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 367-370.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A subset $A$ of a Hausdorff space $X$ is called an $\omega$H-set in $X$ if for every open family $\Cal U$ in $X$ such that $A \subset \bigcup \Cal U$ there exists a countable subfamily $\Cal V$ of $\Cal U$ such that $A \subset \bigcup \{ \overline{V} : V \in \Cal V \}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_{c}(X)}$ for every $\omega$H-set $A$ of a Hausdorff space $X$.
Classification : 54A25, 54D20
Keywords: cardinal function; $\omega$H-set
@article{CMUC_1998__39_2_a12,
     author = {Fedeli, Alessandro},
     title = {$\omega${H-sets} and cardinal invariants},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {367--370},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1998},
     mrnumber = {1651975},
     zbl = {0937.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_2_a12/}
}
TY  - JOUR
AU  - Fedeli, Alessandro
TI  - $\omega$H-sets and cardinal invariants
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 367
EP  - 370
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_2_a12/
LA  - en
ID  - CMUC_1998__39_2_a12
ER  - 
%0 Journal Article
%A Fedeli, Alessandro
%T $\omega$H-sets and cardinal invariants
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 367-370
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_2_a12/
%G en
%F CMUC_1998__39_2_a12
Fedeli, Alessandro. $\omega$H-sets and cardinal invariants. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 2, pp. 367-370. http://geodesic.mathdoc.fr/item/CMUC_1998__39_2_a12/