Decaying positive solutions of some quasilinear differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 39-47.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The existence of decaying positive solutions in ${\Bbb R}_+$ of the equations $(E_\lambda )$ and $(E_\lambda^1)$ displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. $t^{1-p} F(r,tU,t|U'|) \searrow 0$ as $t \nearrow \infty $), a super-sub-solutions method (see \S\,2.2) enables us to obtain existence theorems for more general cases.
Classification : 34B15, 34C10, 34C99, 35B05, 35J60, 35J65, 35J70
Keywords: quasilinear elliptic; integral operators; fixed points theory
@article{CMUC_1998__39_1_a3,
     author = {Tadie},
     title = {Decaying positive solutions of some quasilinear differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1998},
     mrnumber = {1622320},
     zbl = {0944.34005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a3/}
}
TY  - JOUR
AU  - Tadie
TI  - Decaying positive solutions of some quasilinear differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 39
EP  - 47
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a3/
LA  - en
ID  - CMUC_1998__39_1_a3
ER  - 
%0 Journal Article
%A Tadie
%T Decaying positive solutions of some quasilinear differential equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 39-47
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a3/
%G en
%F CMUC_1998__39_1_a3
Tadie. Decaying positive solutions of some quasilinear differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 39-47. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a3/