Order-like structure of monotonically normal spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 207-217.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a compact monotonically normal space X we prove: \, (1) \, $X$ has a dense set of points with a well-ordered neighborhood base (and so $X$ is co-absolute with a compact orderable space); \, (2) \, each point of $X$ has a well-ordered neighborhood $\pi $-base (answering a question of Arhangel'skii); \, (3) \, $X$ is hereditarily paracompact iff $X$ has countable tightness. In the process we introduce weak-tightness, a notion key to the results above and yielding some cardinal function results on monotonically normal spaces.
Classification : 54D15, 54D30, 54F05
Keywords: monotonically normal; compactness; linear ordered spaces
@article{CMUC_1998__39_1_a20,
     author = {Williams, Scott W. and Zhou, Haoxuan},
     title = {Order-like structure of monotonically normal spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1998},
     mrnumber = {1623026},
     zbl = {0937.54012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a20/}
}
TY  - JOUR
AU  - Williams, Scott W.
AU  - Zhou, Haoxuan
TI  - Order-like structure of monotonically normal spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 207
EP  - 217
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a20/
LA  - en
ID  - CMUC_1998__39_1_a20
ER  - 
%0 Journal Article
%A Williams, Scott W.
%A Zhou, Haoxuan
%T Order-like structure of monotonically normal spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 207-217
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a20/
%G en
%F CMUC_1998__39_1_a20
Williams, Scott W.; Zhou, Haoxuan. Order-like structure of monotonically normal spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 207-217. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a20/