Convergence in compacta and linear Lindelöfness
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 159-166.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a compact Hausdorff space with a point $x$ such that $X\setminus \{ x\}$ is linearly Lindelöf. Is then $X$ first countable at $x$? What if this is true for every $x$ in $X$? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is ``yes'' when $X$ is, in addition, $\omega $-monolithic. We also prove that if $X$ is compact, Hausdorff, and $X\setminus \{ x\}$ is strongly discretely Lindelöf, for every $x$ in $X$, then $X$ is first countable. An example of linearly Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing open problems are formulated.
Classification : 54A25, 54D30, 54E35, 54F99
Keywords: point of complete accumulation; linearly Lindelöf space; local compactness; first countability; $\kappa $-accessible diagonal
@article{CMUC_1998__39_1_a15,
     author = {Arhangel'skii, A. V. and Buzyakova, R. Z.},
     title = {Convergence in compacta and linear {Lindel\"ofness}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1998},
     mrnumber = {1623006},
     zbl = {0937.54022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/}
}
TY  - JOUR
AU  - Arhangel'skii, A. V.
AU  - Buzyakova, R. Z.
TI  - Convergence in compacta and linear Lindelöfness
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 159
EP  - 166
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/
LA  - en
ID  - CMUC_1998__39_1_a15
ER  - 
%0 Journal Article
%A Arhangel'skii, A. V.
%A Buzyakova, R. Z.
%T Convergence in compacta and linear Lindelöfness
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 159-166
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/
%G en
%F CMUC_1998__39_1_a15
Arhangel'skii, A. V.; Buzyakova, R. Z. Convergence in compacta and linear Lindelöfness. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 159-166. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/