Convergence in compacta and linear Lindelöfness
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 159-166
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $X$ be a compact Hausdorff space with a point $x$ such that $X\setminus \{ x\}$ is linearly Lindelöf. Is then $X$ first countable at $x$? What if this is true for every $x$ in $X$? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is ``yes'' when $X$ is, in addition, $\omega $-monolithic. We also prove that if $X$ is compact, Hausdorff, and $X\setminus \{ x\}$ is strongly discretely Lindelöf, for every $x$ in $X$, then $X$ is first countable. An example of linearly Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing open problems are formulated.
Classification :
54A25, 54D30, 54E35, 54F99
Keywords: point of complete accumulation; linearly Lindelöf space; local compactness; first countability; $\kappa $-accessible diagonal
Keywords: point of complete accumulation; linearly Lindelöf space; local compactness; first countability; $\kappa $-accessible diagonal
@article{CMUC_1998__39_1_a15,
author = {Arhangel'skii, A. V. and Buzyakova, R. Z.},
title = {Convergence in compacta and linear {Lindel\"ofness}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {159--166},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1998},
mrnumber = {1623006},
zbl = {0937.54022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/}
}
TY - JOUR AU - Arhangel'skii, A. V. AU - Buzyakova, R. Z. TI - Convergence in compacta and linear Lindelöfness JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 159 EP - 166 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/ LA - en ID - CMUC_1998__39_1_a15 ER -
Arhangel'skii, A. V.; Buzyakova, R. Z. Convergence in compacta and linear Lindelöfness. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 159-166. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a15/