The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 115-135
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We shall show that every differential operator of 2-nd order in a real separable Hilbert space can be decomposed into a regular and an irregular operator. Then we shall characterize irregular operators and differential operators satisfying the maximum principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular differential operators satisfying the maximum principle.
Classification :
31C45, 35R15, 46C99, 46G05, 47F05
Keywords: Lévy laplacian; maximum principle; Dirichlet and Poisson problem
Keywords: Lévy laplacian; maximum principle; Dirichlet and Poisson problem
@article{CMUC_1998__39_1_a12,
author = {L\'avi\v{c}ka, Roman},
title = {The {L\'evy} laplacian and differential operators of 2-nd order in {Hilbert} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {115--135},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1998},
mrnumber = {1622994},
zbl = {0945.47037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/}
}
TY - JOUR AU - Lávička, Roman TI - The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 115 EP - 135 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/ LA - en ID - CMUC_1998__39_1_a12 ER -
Lávička, Roman. The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 115-135. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/