The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 115-135.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We shall show that every differential operator of 2-nd order in a real separable Hilbert space can be decomposed into a regular and an irregular operator. Then we shall characterize irregular operators and differential operators satisfying the maximum principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular differential operators satisfying the maximum principle.
Classification : 31C45, 35R15, 46C99, 46G05, 47F05
Keywords: Lévy laplacian; maximum principle; Dirichlet and Poisson problem
@article{CMUC_1998__39_1_a12,
     author = {L\'avi\v{c}ka, Roman},
     title = {The {L\'evy} laplacian and differential operators of 2-nd order in {Hilbert} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {115--135},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1998},
     mrnumber = {1622994},
     zbl = {0945.47037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/}
}
TY  - JOUR
AU  - Lávička, Roman
TI  - The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 115
EP  - 135
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/
LA  - en
ID  - CMUC_1998__39_1_a12
ER  - 
%0 Journal Article
%A Lávička, Roman
%T The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 115-135
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/
%G en
%F CMUC_1998__39_1_a12
Lávička, Roman. The Lévy laplacian and differential operators of 2-nd order in Hilbert spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 115-135. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a12/