Inequalities for surface integrals of non-negative subharmonic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 101-113
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let ${\Cal H}$ denote the class of positive harmonic functions on a bounded domain $\Omega$ in $\Bbb R^N$. Let $S$ be a sphere contained in $\overline{\Omega}$, and let $\sigma$ denote the $(N-1)$-dimensional measure. We give a condition on $\Omega$ which guarantees that there exists a constant $K$, depending only on $\Omega$ and $S$, such that $\int_Su\,d\sigma \le K\int_{\partial\Omega}u\,d\sigma$ for every $u\in {\Cal H}\cap C(\overline{\Omega})$. If this inequality holds for every such $u$, then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for $K$ are given. In particular the classical value $K=2$ for convex domains is slightly improved.
@article{CMUC_1998__39_1_a11,
author = {Aldred, M. P. and Armitage, D. H.},
title = {Inequalities for surface integrals of non-negative subharmonic functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {101--113},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1998},
mrnumber = {1622990},
zbl = {0938.31001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/}
}
TY - JOUR AU - Aldred, M. P. AU - Armitage, D. H. TI - Inequalities for surface integrals of non-negative subharmonic functions JO - Commentationes Mathematicae Universitatis Carolinae PY - 1998 SP - 101 EP - 113 VL - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/ LA - en ID - CMUC_1998__39_1_a11 ER -
%0 Journal Article %A Aldred, M. P. %A Armitage, D. H. %T Inequalities for surface integrals of non-negative subharmonic functions %J Commentationes Mathematicae Universitatis Carolinae %D 1998 %P 101-113 %V 39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/ %G en %F CMUC_1998__39_1_a11
Aldred, M. P.; Armitage, D. H. Inequalities for surface integrals of non-negative subharmonic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/