Inequalities for surface integrals of non-negative subharmonic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 101-113.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let ${\Cal H}$ denote the class of positive harmonic functions on a bounded domain $\Omega$ in $\Bbb R^N$. Let $S$ be a sphere contained in $\overline{\Omega}$, and let $\sigma$ denote the $(N-1)$-dimensional measure. We give a condition on $\Omega$ which guarantees that there exists a constant $K$, depending only on $\Omega$ and $S$, such that $\int_Su\,d\sigma \le K\int_{\partial\Omega}u\,d\sigma$ for every $u\in {\Cal H}\cap C(\overline{\Omega})$. If this inequality holds for every such $u$, then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for $K$ are given. In particular the classical value $K=2$ for convex domains is slightly improved.
Classification : 31B05
Keywords: subharmonic; surface integral
@article{CMUC_1998__39_1_a11,
     author = {Aldred, M. P. and Armitage, D. H.},
     title = {Inequalities for surface integrals of non-negative subharmonic functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1998},
     mrnumber = {1622990},
     zbl = {0938.31001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/}
}
TY  - JOUR
AU  - Aldred, M. P.
AU  - Armitage, D. H.
TI  - Inequalities for surface integrals of non-negative subharmonic functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 101
EP  - 113
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/
LA  - en
ID  - CMUC_1998__39_1_a11
ER  - 
%0 Journal Article
%A Aldred, M. P.
%A Armitage, D. H.
%T Inequalities for surface integrals of non-negative subharmonic functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 101-113
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/
%G en
%F CMUC_1998__39_1_a11
Aldred, M. P.; Armitage, D. H. Inequalities for surface integrals of non-negative subharmonic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 101-113. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a11/