The Re-nonnegative definite solutions to the matrix equation $AXB=C$
Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 7-13.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An $n\times n$ complex matrix $A$ is called Re-nonnegative definite (Re-nnd) if the real part of $x^{\ast } Ax$ is nonnegative for every complex $n$-vector $x$. In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation $AXB=C$ are presented.
Classification : 15A24, 15A57
Keywords: Re-nonnegative define matrix; matrix equation; generalized singular value decomposition
@article{CMUC_1998__39_1_a1,
     author = {Wang, Qingwen and Yang, Changlan},
     title = {The {Re-nonnegative} definite solutions to the matrix equation $AXB=C$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {7--13},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {1998},
     mrnumber = {1622312},
     zbl = {0937.15008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a1/}
}
TY  - JOUR
AU  - Wang, Qingwen
AU  - Yang, Changlan
TI  - The Re-nonnegative definite solutions to the matrix equation $AXB=C$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1998
SP  - 7
EP  - 13
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a1/
LA  - en
ID  - CMUC_1998__39_1_a1
ER  - 
%0 Journal Article
%A Wang, Qingwen
%A Yang, Changlan
%T The Re-nonnegative definite solutions to the matrix equation $AXB=C$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1998
%P 7-13
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a1/
%G en
%F CMUC_1998__39_1_a1
Wang, Qingwen; Yang, Changlan. The Re-nonnegative definite solutions to the matrix equation $AXB=C$. Commentationes Mathematicae Universitatis Carolinae, Tome 39 (1998) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/CMUC_1998__39_1_a1/