On non-homogeneous viscous incompressible fluids. Existence of regular solutions
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 697-715
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when $\Omega$ is smooth enough, there exists a local strong regular solution (which is global for small regular data).
@article{CMUC_1997__38_4_a7,
author = {Lemoine, J\'er\^ome},
title = {On non-homogeneous viscous incompressible fluids. {Existence} of regular solutions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {697--715},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {1997},
mrnumber = {1603698},
zbl = {0940.35153},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/}
}
TY - JOUR AU - Lemoine, Jérôme TI - On non-homogeneous viscous incompressible fluids. Existence of regular solutions JO - Commentationes Mathematicae Universitatis Carolinae PY - 1997 SP - 697 EP - 715 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/ LA - en ID - CMUC_1997__38_4_a7 ER -
%0 Journal Article %A Lemoine, Jérôme %T On non-homogeneous viscous incompressible fluids. Existence of regular solutions %J Commentationes Mathematicae Universitatis Carolinae %D 1997 %P 697-715 %V 38 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/ %G en %F CMUC_1997__38_4_a7
Lemoine, Jérôme. On non-homogeneous viscous incompressible fluids. Existence of regular solutions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 697-715. http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/