On non-homogeneous viscous incompressible fluids. Existence of regular solutions
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 697-715.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when $\Omega$ is smooth enough, there exists a local strong regular solution (which is global for small regular data).
Classification : 35B65, 35Q30, 76D05
Keywords: Navier-Stokes equations
@article{CMUC_1997__38_4_a7,
     author = {Lemoine, J\'er\^ome},
     title = {On non-homogeneous viscous incompressible fluids.  {Existence} of regular solutions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {697--715},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {1997},
     mrnumber = {1603698},
     zbl = {0940.35153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/}
}
TY  - JOUR
AU  - Lemoine, Jérôme
TI  - On non-homogeneous viscous incompressible fluids.  Existence of regular solutions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 697
EP  - 715
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/
LA  - en
ID  - CMUC_1997__38_4_a7
ER  - 
%0 Journal Article
%A Lemoine, Jérôme
%T On non-homogeneous viscous incompressible fluids.  Existence of regular solutions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 697-715
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/
%G en
%F CMUC_1997__38_4_a7
Lemoine, Jérôme. On non-homogeneous viscous incompressible fluids.  Existence of regular solutions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 697-715. http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a7/