Continuity of order-preserving functions
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 645-655.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let the spaces $\bold R^m$ and $\bold R^n$ be ordered by cones $P$ and $Q$ respectively, let $A$ be a nonempty subset of $\bold R^m$, and let $f:A\longrightarrow \bold R^n$ be an order-preserving function. Suppose that $P$ is generating in $\bold R^m$, and that $Q$ contains no affine line. Then $f$ is locally bounded on the interior of $A$, and continuous almost everywhere with respect to the Lebesgue measure on $\bold R^m$. If in addition $P$ is a closed halfspace and if $A$ is connected, then $f$ is continuous if and only if the range $f(A)$ is connected.
Classification : 26B05, 26B35, 47H07
Keywords: order-preserving function; ordered vector space; cone; solid set; continuity
@article{CMUC_1997__38_4_a3,
     author = {Lavri\v{c}, Boris},
     title = {Continuity of order-preserving functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {645--655},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {1997},
     mrnumber = {1601672},
     zbl = {0942.26022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a3/}
}
TY  - JOUR
AU  - Lavrič, Boris
TI  - Continuity of order-preserving functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 645
EP  - 655
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a3/
LA  - en
ID  - CMUC_1997__38_4_a3
ER  - 
%0 Journal Article
%A Lavrič, Boris
%T Continuity of order-preserving functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 645-655
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a3/
%G en
%F CMUC_1997__38_4_a3
Lavrič, Boris. Continuity of order-preserving functions. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 645-655. http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a3/