Finite spaces and the universal bundle of a group
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 791-799
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We find sufficient conditions for a cotriad of which the objects are locally trivial fibrations, in order that the push-out be a locally trivial fibration. As an application, the universal $G$-bundle of a finite group $G$, and the classifying space is modeled by locally finite spaces. In particular, if $G$ is finite, then the universal $G$-bundle is the limit of an ascending chain of finite spaces. The bundle projection is a covering projection.
Classification :
54B15, 54B17, 55R35, 55R40, 55R65
Keywords: covering projection; fibration; finite space; push-out
Keywords: covering projection; fibration; finite space; push-out
@article{CMUC_1997__38_4_a13,
author = {Witbooi, Peter},
title = {Finite spaces and the universal bundle of a group},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {791--799},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {1997},
mrnumber = {1603722},
zbl = {0938.55024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a13/}
}
Witbooi, Peter. Finite spaces and the universal bundle of a group. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 791-799. http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a13/