Generalized linearly ordered spaces and weak pseudocompactness
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 775-790.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is {\it truly weakly pseudocompact} if $X$ is either weakly pseudocompact or Lindelöf locally compact. We prove that if $X$ is a generalized linearly ordered space, and either (i) each proper open interval in $X$ is truly weakly pseudocompact, or (ii) $X$ is paracompact and each point of $X$ has a truly weakly pseudocompact neighborhood, then $X$ is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck].
Classification : 54D35, 54F05
Keywords: weakly pseudocompact spaces; GLOTS; compactifications
@article{CMUC_1997__38_4_a12,
     author = {Okunev, O. and Tamariz-Mascar\'ua, A.},
     title = {Generalized linearly ordered spaces and weak pseudocompactness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {775--790},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {1997},
     mrnumber = {1603718},
     zbl = {0937.54021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/}
}
TY  - JOUR
AU  - Okunev, O.
AU  - Tamariz-Mascarúa, A.
TI  - Generalized linearly ordered spaces and weak pseudocompactness
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 775
EP  - 790
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/
LA  - en
ID  - CMUC_1997__38_4_a12
ER  - 
%0 Journal Article
%A Okunev, O.
%A Tamariz-Mascarúa, A.
%T Generalized linearly ordered spaces and weak pseudocompactness
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 775-790
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/
%G en
%F CMUC_1997__38_4_a12
Okunev, O.; Tamariz-Mascarúa, A. Generalized linearly ordered spaces and weak pseudocompactness. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 775-790. http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/