Generalized linearly ordered spaces and weak pseudocompactness
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 775-790
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A space $X$ is {\it truly weakly pseudocompact} if $X$ is either weakly pseudocompact or Lindelöf locally compact. We prove that if $X$ is a generalized linearly ordered space, and either (i) each proper open interval in $X$ is truly weakly pseudocompact, or (ii) $X$ is paracompact and each point of $X$ has a truly weakly pseudocompact neighborhood, then $X$ is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck].
Classification :
54D35, 54F05
Keywords: weakly pseudocompact spaces; GLOTS; compactifications
Keywords: weakly pseudocompact spaces; GLOTS; compactifications
@article{CMUC_1997__38_4_a12,
author = {Okunev, O. and Tamariz-Mascar\'ua, A.},
title = {Generalized linearly ordered spaces and weak pseudocompactness},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {775--790},
publisher = {mathdoc},
volume = {38},
number = {4},
year = {1997},
mrnumber = {1603718},
zbl = {0937.54021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/}
}
TY - JOUR AU - Okunev, O. AU - Tamariz-Mascarúa, A. TI - Generalized linearly ordered spaces and weak pseudocompactness JO - Commentationes Mathematicae Universitatis Carolinae PY - 1997 SP - 775 EP - 790 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/ LA - en ID - CMUC_1997__38_4_a12 ER -
%0 Journal Article %A Okunev, O. %A Tamariz-Mascarúa, A. %T Generalized linearly ordered spaces and weak pseudocompactness %J Commentationes Mathematicae Universitatis Carolinae %D 1997 %P 775-790 %V 38 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/ %G en %F CMUC_1997__38_4_a12
Okunev, O.; Tamariz-Mascarúa, A. Generalized linearly ordered spaces and weak pseudocompactness. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 4, pp. 775-790. http://geodesic.mathdoc.fr/item/CMUC_1997__38_4_a12/