How restrictive is topological dynamics?
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 563-569.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T$ be a permutation of an abstract set $X$. In ZFC, we find a necessary and sufficient condition it terms of cardinalities of the $T$-orbits that allows us to topologize $(X,T)$ as a topological dynamical system on a compact Hausdorff space. This extends an early result of H. de Vries concerning compact metric dynamical systems. An analogous result is obtained for ${\bold Z}^2$-actions without periodic points.
Classification : 54H20
Keywords: abstract dynamical system; pointwise periodic system; symbolic dynamics; $\bold Z^2$-action
@article{CMUC_1997__38_3_a12,
     author = {Iwanik, A.},
     title = {How restrictive is topological dynamics?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {563--569},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1997},
     mrnumber = {1485077},
     zbl = {0938.54036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a12/}
}
TY  - JOUR
AU  - Iwanik, A.
TI  - How restrictive is topological dynamics?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 563
EP  - 569
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a12/
LA  - en
ID  - CMUC_1997__38_3_a12
ER  - 
%0 Journal Article
%A Iwanik, A.
%T How restrictive is topological dynamics?
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 563-569
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a12/
%G en
%F CMUC_1997__38_3_a12
Iwanik, A. How restrictive is topological dynamics?. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 563-569. http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a12/