When is $\bold N$ Lindelöf?
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 553-556.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\Bbb N$ is a Lindelöf space, (2) $\Bbb Q$ is a Lindelöf space, (3) $\Bbb R$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\Bbb R$ is separable, (6) in $\Bbb R$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\Bbb R\rightarrow \Bbb R$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\Bbb R$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\Bbb R$.
Classification : 03E25, 04A25, 26A03, 26A15, 54A35, 54D20
Keywords: axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness
@article{CMUC_1997__38_3_a10,
     author = {Herrlich, Horst and Strecker, George E.},
     title = {When is $\bold N$ {Lindel\"of?}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {553--556},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1997},
     mrnumber = {1485075},
     zbl = {0938.54008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a10/}
}
TY  - JOUR
AU  - Herrlich, Horst
AU  - Strecker, George E.
TI  - When is $\bold N$ Lindelöf?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 553
EP  - 556
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a10/
LA  - en
ID  - CMUC_1997__38_3_a10
ER  - 
%0 Journal Article
%A Herrlich, Horst
%A Strecker, George E.
%T When is $\bold N$ Lindelöf?
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 553-556
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a10/
%G en
%F CMUC_1997__38_3_a10
Herrlich, Horst; Strecker, George E. When is $\bold N$ Lindelöf?. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 553-556. http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a10/