When is $\bold N$ Lindelöf?
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 553-556
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\Bbb N$ is a Lindelöf space, (2) $\Bbb Q$ is a Lindelöf space, (3) $\Bbb R$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\Bbb R$ is separable, (6) in $\Bbb R$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\Bbb R\rightarrow \Bbb R$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\Bbb R$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\Bbb R$.
Classification :
03E25, 04A25, 26A03, 26A15, 54A35, 54D20
Keywords: axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness
Keywords: axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness
@article{CMUC_1997__38_3_a10,
author = {Herrlich, Horst and Strecker, George E.},
title = {When is $\bold N$ {Lindel\"of?}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {553--556},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1997},
mrnumber = {1485075},
zbl = {0938.54008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a10/}
}
Herrlich, Horst; Strecker, George E. When is $\bold N$ Lindelöf?. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 3, pp. 553-556. http://geodesic.mathdoc.fr/item/CMUC_1997__38_3_a10/