Antiproximinal sets in the Banach space $c(X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 247-253.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.
Classification : 41A50, 41A65, 46B20, 46B99
Keywords: antiproximinal sets; best approximation
@article{CMUC_1997__38_2_a4,
     author = {Cobza\c{s}, S.},
     title = {Antiproximinal sets in the {Banach} space $c(X)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {247--253},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1997},
     mrnumber = {1455491},
     zbl = {0887.41029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a4/}
}
TY  - JOUR
AU  - Cobzaş, S.
TI  - Antiproximinal sets in the Banach space $c(X)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 247
EP  - 253
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a4/
LA  - en
ID  - CMUC_1997__38_2_a4
ER  - 
%0 Journal Article
%A Cobzaş, S.
%T Antiproximinal sets in the Banach space $c(X)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 247-253
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a4/
%G en
%F CMUC_1997__38_2_a4
Cobzaş, S. Antiproximinal sets in the Banach space $c(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 247-253. http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a4/