Antiproximinal sets in the Banach space $c(X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 247-253
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.
Classification :
41A50, 41A65, 46B20, 46B99
Keywords: antiproximinal sets; best approximation
Keywords: antiproximinal sets; best approximation
@article{CMUC_1997__38_2_a4,
author = {Cobza\c{s}, S.},
title = {Antiproximinal sets in the {Banach} space $c(X)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {247--253},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1997},
mrnumber = {1455491},
zbl = {0887.41029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a4/}
}
Cobzaş, S. Antiproximinal sets in the Banach space $c(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 247-253. http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a4/