Implicit integral equations with discontinuous right-hand side
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 241-246.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the integral equation $h(u(t))=f\big(\int_I g(t,x)\,u(x)\,dx\big)$, with $t\in[0,1]$, and prove an existence theorem for bounded solutions where $f$ is not assumed to be continuous.
Classification : 45G10, 47H04, 47H15, 47N20
Keywords: integral equations; discontinuity; bounded solutions
@article{CMUC_1997__38_2_a3,
     author = {Cammaroto, Filippo and Cubiotti, Paolo},
     title = {Implicit integral equations with discontinuous right-hand side},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {241--246},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1997},
     mrnumber = {1455490},
     zbl = {0886.47031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a3/}
}
TY  - JOUR
AU  - Cammaroto, Filippo
AU  - Cubiotti, Paolo
TI  - Implicit integral equations with discontinuous right-hand side
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 241
EP  - 246
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a3/
LA  - en
ID  - CMUC_1997__38_2_a3
ER  - 
%0 Journal Article
%A Cammaroto, Filippo
%A Cubiotti, Paolo
%T Implicit integral equations with discontinuous right-hand side
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 241-246
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a3/
%G en
%F CMUC_1997__38_2_a3
Cammaroto, Filippo; Cubiotti, Paolo. Implicit integral equations with discontinuous right-hand side. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 241-246. http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a3/