Centralizers on prime and semiprime rings
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 231-240.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$.
Classification : 16A12, 16A68, 16A72, 16N60, 16U70, 16W10, 16W25
Keywords: prime ring; semiprime ring; extended centroid; derivation; Jordan derivation; left (right) centralizer; Jordan left (right) centralizer; commuting mapping; centralizing mapping
@article{CMUC_1997__38_2_a2,
     author = {Vukman, Joso},
     title = {Centralizers on prime and semiprime rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1997},
     mrnumber = {1455489},
     zbl = {0889.16016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a2/}
}
TY  - JOUR
AU  - Vukman, Joso
TI  - Centralizers on prime and semiprime rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 231
EP  - 240
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a2/
LA  - en
ID  - CMUC_1997__38_2_a2
ER  - 
%0 Journal Article
%A Vukman, Joso
%T Centralizers on prime and semiprime rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 231-240
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a2/
%G en
%F CMUC_1997__38_2_a2
Vukman, Joso. Centralizers on prime and semiprime rings. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 231-240. http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a2/