Sets of extended uniqueness and $\sigma$-porosity
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 337-341
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that there exists a closed non-$\sigma$-porous set of extended uniqueness. We also give a new proof of Lyons' theorem, which shows that the class of $H^{(n)}$-sets is not large in $U_0$.
Classification :
28A05, 42A63, 43A46
Keywords: $\sigma $-porosity; sets of extended uniqueness; trigonometric series; $H^{(n)}$-sets
Keywords: $\sigma $-porosity; sets of extended uniqueness; trigonometric series; $H^{(n)}$-sets
@article{CMUC_1997__38_2_a13,
author = {Zelen\'y, Miroslav},
title = {Sets of extended uniqueness and $\sigma$-porosity},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {337--341},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1997},
mrnumber = {1455500},
zbl = {0894.28001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a13/}
}
Zelený, Miroslav. Sets of extended uniqueness and $\sigma$-porosity. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 337-341. http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a13/