Landesman Lazer type results for first order periodic problems
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 297-308
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Existence of nonnegative solutions are established for the periodic problem $y'=f(t,y)$ a.e\. on $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.
Classification :
34A05, 34A12, 34B15, 47H15, 47N20
Keywords: periodic; existence; Landesman Lazer
Keywords: periodic; existence; Landesman Lazer
@article{CMUC_1997__38_2_a10,
author = {O'Regan, Donal},
title = {Landesman {Lazer} type results for first order periodic problems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {297--308},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1997},
mrnumber = {1455497},
zbl = {0893.34012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a10/}
}
TY - JOUR AU - O'Regan, Donal TI - Landesman Lazer type results for first order periodic problems JO - Commentationes Mathematicae Universitatis Carolinae PY - 1997 SP - 297 EP - 308 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a10/ LA - en ID - CMUC_1997__38_2_a10 ER -
O'Regan, Donal. Landesman Lazer type results for first order periodic problems. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 2, pp. 297-308. http://geodesic.mathdoc.fr/item/CMUC_1997__38_2_a10/