Some non-multiplicative properties are $l$-invariant
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 1, pp. 169-175
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A cardinal function $\varphi$ (or a property $\Cal P$) is called $l$-invariant if for any Tychonoff spaces $X$ and $Y$ with $C_p(X)$ and $C_p(Y)$ linearly homeomorphic we have $\varphi(X)=\varphi(Y)$ (or the space $X$ has $\Cal P$ ($\equiv X\vdash {\Cal P}$) iff $Y\vdash\Cal P$). We prove that the hereditary Lindelöf number is $l$-invariant as well as that there are models of $ZFC$ in which hereditary separability is $l$-invariant.
Classification :
54A25, 54A35, 54C35
Keywords: $l$-equivalent spaces; $l$-invariant property; hereditary Lindelöf number
Keywords: $l$-equivalent spaces; $l$-invariant property; hereditary Lindelöf number
@article{CMUC_1997__38_1_a15,
author = {Tkachuk, Vladimir V.},
title = {Some non-multiplicative properties are $l$-invariant},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {169--175},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {1997},
mrnumber = {1455481},
zbl = {0886.54005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/}
}
TY - JOUR AU - Tkachuk, Vladimir V. TI - Some non-multiplicative properties are $l$-invariant JO - Commentationes Mathematicae Universitatis Carolinae PY - 1997 SP - 169 EP - 175 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/ LA - en ID - CMUC_1997__38_1_a15 ER -
Tkachuk, Vladimir V. Some non-multiplicative properties are $l$-invariant. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 1, pp. 169-175. http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/