Some non-multiplicative properties are $l$-invariant
Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 1, pp. 169-175.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A cardinal function $\varphi$ (or a property $\Cal P$) is called $l$-invariant if for any Tychonoff spaces $X$ and $Y$ with $C_p(X)$ and $C_p(Y)$ linearly homeomorphic we have $\varphi(X)=\varphi(Y)$ (or the space $X$ has $\Cal P$ ($\equiv X\vdash {\Cal P}$) iff $Y\vdash\Cal P$). We prove that the hereditary Lindelöf number is $l$-invariant as well as that there are models of $ZFC$ in which hereditary separability is $l$-invariant.
Classification : 54A25, 54A35, 54C35
Keywords: $l$-equivalent spaces; $l$-invariant property; hereditary Lindelöf number
@article{CMUC_1997__38_1_a15,
     author = {Tkachuk, Vladimir V.},
     title = {Some non-multiplicative properties are $l$-invariant},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {169--175},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {1997},
     mrnumber = {1455481},
     zbl = {0886.54005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/}
}
TY  - JOUR
AU  - Tkachuk, Vladimir V.
TI  - Some non-multiplicative properties are $l$-invariant
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1997
SP  - 169
EP  - 175
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/
LA  - en
ID  - CMUC_1997__38_1_a15
ER  - 
%0 Journal Article
%A Tkachuk, Vladimir V.
%T Some non-multiplicative properties are $l$-invariant
%J Commentationes Mathematicae Universitatis Carolinae
%D 1997
%P 169-175
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/
%G en
%F CMUC_1997__38_1_a15
Tkachuk, Vladimir V. Some non-multiplicative properties are $l$-invariant. Commentationes Mathematicae Universitatis Carolinae, Tome 38 (1997) no. 1, pp. 169-175. http://geodesic.mathdoc.fr/item/CMUC_1997__38_1_a15/