Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 707-723
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $T$ be a positive number or $+\infty$. We characterize all subsets $M$ of $\Bbb R^n \times ]0,T[ $ such that $$ \inf\limits_{X\in \Bbb R^n \times ]0,T[}u(X) = \inf\limits_{X\in M}u(X) \tag{i} $$ for every positive parabolic function $u$ on $\Bbb R^n \times ]0,T[$ in terms of coparabolic (minimal) thinness of the set $M_\delta =\cup_{(x,t)\in M} B^p((x,t),\delta t)$, where $\delta \in (0,1)$ and $B^p((x,t),r)$ is the ``heat ball'' with the ``center'' $(x,t)$ and radius $r$. Examples of different types of sets which can be used instead of ``heat balls'' are given. It is proved that (i) is equivalent to the condition $ \sup_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup_{X\in M}u(X) $ for every bounded parabolic function on $\Bbb R^n \times \Bbb R^+$ and hence to all equivalent conditions given in the article [7]. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References.
Classification :
31B10, 35B05, 35K05, 35K10, 35K15
Keywords: heat equation; parabolic function; Weierstrass kernel; set of determination; Harnack inequality; coparabolic thinness; coparabolic minimal thinness; heat ball
Keywords: heat equation; parabolic function; Weierstrass kernel; set of determination; Harnack inequality; coparabolic thinness; coparabolic minimal thinness; heat ball
@article{CMUC_1996__37_4_a4,
author = {Rano\v{s}ov\'a, Jarmila},
title = {Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {707--723},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {1996},
mrnumber = {1440703},
zbl = {0887.35064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/}
}
TY - JOUR AU - Ranošová, Jarmila TI - Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 707 EP - 723 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/ LA - en ID - CMUC_1996__37_4_a4 ER -
%0 Journal Article %A Ranošová, Jarmila %T Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness %J Commentationes Mathematicae Universitatis Carolinae %D 1996 %P 707-723 %V 37 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/ %G en %F CMUC_1996__37_4_a4
Ranošová, Jarmila. Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 707-723. http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/