Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 707-723.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T$ be a positive number or $+\infty$. We characterize all subsets $M$ of $\Bbb R^n \times ]0,T[ $ such that $$ \inf\limits_{X\in \Bbb R^n \times ]0,T[}u(X) = \inf\limits_{X\in M}u(X) \tag{i} $$ for every positive parabolic function $u$ on $\Bbb R^n \times ]0,T[$ in terms of coparabolic (minimal) thinness of the set $M_\delta =\cup_{(x,t)\in M} B^p((x,t),\delta t)$, where $\delta \in (0,1)$ and $B^p((x,t),r)$ is the ``heat ball'' with the ``center'' $(x,t)$ and radius $r$. Examples of different types of sets which can be used instead of ``heat balls'' are given. It is proved that (i) is equivalent to the condition $ \sup_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup_{X\in M}u(X) $ for every bounded parabolic function on $\Bbb R^n \times \Bbb R^+$ and hence to all equivalent conditions given in the article [7]. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References.
Classification : 31B10, 35B05, 35K05, 35K10, 35K15
Keywords: heat equation; parabolic function; Weierstrass kernel; set of determination; Harnack inequality; coparabolic thinness; coparabolic minimal thinness; heat ball
@article{CMUC_1996__37_4_a4,
     author = {Rano\v{s}ov\'a, Jarmila},
     title = {Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {707--723},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {1996},
     mrnumber = {1440703},
     zbl = {0887.35064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/}
}
TY  - JOUR
AU  - Ranošová, Jarmila
TI  - Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 707
EP  - 723
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/
LA  - en
ID  - CMUC_1996__37_4_a4
ER  - 
%0 Journal Article
%A Ranošová, Jarmila
%T Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 707-723
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/
%G en
%F CMUC_1996__37_4_a4
Ranošová, Jarmila. Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 707-723. http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a4/