On a theorem of Fermi
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 867-872.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Conformally flat metric $\bar g$ is said to be Ricci superosculating with $g$ at the point $x_0$ if $g_{ij}(x_0)=\bar g_{ij}(x_0)$, $\Gamma _{ij}^k(x_0)=\bar \Gamma _{ij}^k(x_0)$, $R_{ij}^k(x_0)=\bar R_{ij}^k(x_0)$, where $R_{ij}$ is the Ricci tensor. In this paper the following theorem is proved: \medskip {\sl If $\,\gamma $ is a smooth curve of the Riemannian manifold $M$ {\rm (}without self-crossing{\rm (}, then there is a neighbourhood of $\,\gamma $ and a conformally flat metric $\bar g$ which is the Ricci superosculating with $g$ along the curve $\gamma $.\/}
Classification : 53A30, 53B20, 53C20
Keywords: conformal connection; development
@article{CMUC_1996__37_4_a18,
     author = {Slavskii, V. V.},
     title = {On a theorem of {Fermi}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {867--872},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {1996},
     mrnumber = {1440717},
     zbl = {0888.53030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a18/}
}
TY  - JOUR
AU  - Slavskii, V. V.
TI  - On a theorem of Fermi
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 867
EP  - 872
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a18/
LA  - en
ID  - CMUC_1996__37_4_a18
ER  - 
%0 Journal Article
%A Slavskii, V. V.
%T On a theorem of Fermi
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 867-872
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a18/
%G en
%F CMUC_1996__37_4_a18
Slavskii, V. V. On a theorem of Fermi. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 867-872. http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a18/