OCA and towers in $\Cal P(\Bbb N)/fin$
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 861-866
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We shall show that Open Coloring Axiom has different influence on the algebra $\Cal P(\Bbb N)/fin$ than on $\Bbb N^\Bbb N/fin$. The tool used to accomplish this is forcing with a Suslin tree.
Classification :
03E05, 03E35, 03E50, 04A20, 06A05
Keywords: Open Coloring Axiom; dense sets of reals; towers; forcing; Suslin trees
Keywords: Open Coloring Axiom; dense sets of reals; towers; forcing; Suslin trees
@article{CMUC_1996__37_4_a17,
author = {Farah, Ilijas},
title = {OCA and towers in $\Cal P(\Bbb N)/fin$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {861--866},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {1996},
mrnumber = {1440716},
zbl = {0887.03037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a17/}
}
Farah, Ilijas. OCA and towers in $\Cal P(\Bbb N)/fin$. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 4, pp. 861-866. http://geodesic.mathdoc.fr/item/CMUC_1996__37_4_a17/