On positive operator-valued continuous maps
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 499-505
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that $\text{ext-ray} \text{C}_+(K,\mathcal L(H)) = \{\Bbb R_+ {\bold 1}_{\{k_0\}} \bold x\otimes\bold x : \bold x\in \bold S(H), k_0 \text{ is an isolated point of } K\}$ $\text{ext} \bold B_+(\text{C}(K,\mathcal L(H))) = \text{s-ext } \bold B_+(\text{C}(K,\mathcal L(H)))=\{f\in \text{C}(K,\mathcal L(H) : f(K)\subset \text{ext } \bold B_+(\mathcal L(H))\}$. Moreover we describe exposed, strongly exposed and denting points.
Classification :
46B20, 46B28, 46E40, 47A56, 47D20, 47L07
Keywords: exposed point; denting point; Hilbert space; positive operator
Keywords: exposed point; denting point; Hilbert space; positive operator
@article{CMUC_1996__37_3_a6,
author = {Grza\'slewicz, Ryszard},
title = {On positive operator-valued continuous maps},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {499--505},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1996},
mrnumber = {1426914},
zbl = {0881.47001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a6/}
}
Grzaślewicz, Ryszard. On positive operator-valued continuous maps. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 499-505. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a6/