Homogeneous Einstein metrics on Stiefel manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 627-634
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A Stiefel manifold $V_k\bold R^n$ is the set of orthonormal $k$-frames in $\bold R^n$, and it is diffeomorphic to the homogeneous space $SO(n)/SO(n-k)$. We study $SO(n)$-invariant Einstein metrics on this space. We determine when the standard metric on $SO(n)/SO(n-k)$ is Einstein, and we give an explicit solution to the Einstein equation for the space $V_2\bold R^n$.
Classification :
53C20, 53C25, 53C30
Keywords: Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds
Keywords: Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds
@article{CMUC_1996__37_3_a19,
author = {Arvanitoyeorgos, Andreas},
title = {Homogeneous {Einstein} metrics on {Stiefel} manifolds},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {627--634},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1996},
mrnumber = {1426927},
zbl = {0881.53042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/}
}
TY - JOUR AU - Arvanitoyeorgos, Andreas TI - Homogeneous Einstein metrics on Stiefel manifolds JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 627 EP - 634 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/ LA - en ID - CMUC_1996__37_3_a19 ER -
Arvanitoyeorgos, Andreas. Homogeneous Einstein metrics on Stiefel manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 627-634. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/