Homogeneous Einstein metrics on Stiefel manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 627-634.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A Stiefel manifold $V_k\bold R^n$ is the set of orthonormal $k$-frames in $\bold R^n$, and it is diffeomorphic to the homogeneous space $SO(n)/SO(n-k)$. We study $SO(n)$-invariant Einstein metrics on this space. We determine when the standard metric on $SO(n)/SO(n-k)$ is Einstein, and we give an explicit solution to the Einstein equation for the space $V_2\bold R^n$.
Classification : 53C20, 53C25, 53C30
Keywords: Riemannian geometry; homogeneous spaces; Einstein metrics; Stiefel manifolds
@article{CMUC_1996__37_3_a19,
     author = {Arvanitoyeorgos, Andreas},
     title = {Homogeneous {Einstein} metrics on {Stiefel} manifolds},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {627--634},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1996},
     mrnumber = {1426927},
     zbl = {0881.53042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/}
}
TY  - JOUR
AU  - Arvanitoyeorgos, Andreas
TI  - Homogeneous Einstein metrics on Stiefel manifolds
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 627
EP  - 634
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/
LA  - en
ID  - CMUC_1996__37_3_a19
ER  - 
%0 Journal Article
%A Arvanitoyeorgos, Andreas
%T Homogeneous Einstein metrics on Stiefel manifolds
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 627-634
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/
%G en
%F CMUC_1996__37_3_a19
Arvanitoyeorgos, Andreas. Homogeneous Einstein metrics on Stiefel manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 627-634. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a19/