On finite powers of countably compact groups
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 617-626
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We will show that under ${M\kern -1.8pt A\kern 0.2pt }_{countable}$ for each $k \in \Bbb N$ there exists a group whose $k$-th power is countably compact but whose $2^k$-th power is not countably compact. In particular, for each $k \in \Bbb N$ there exists $l \in [k,2^k)$ and a group whose $l$-th power is countably compact but the $l+1$-st power is not countably compact.
Classification :
22A05, 54A35, 54B10, 54D20, 54H11
Keywords: countable compactness; ${M\kern -1.8pt A\kern 0.2pt }_{countable}$; topological groups; finite powers
Keywords: countable compactness; ${M\kern -1.8pt A\kern 0.2pt }_{countable}$; topological groups; finite powers
@article{CMUC_1996__37_3_a18,
author = {Tomita, Artur Hideyuki},
title = {On finite powers of countably compact groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {617--626},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1996},
mrnumber = {1426926},
zbl = {0881.54022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a18/}
}
Tomita, Artur Hideyuki. On finite powers of countably compact groups. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 617-626. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a18/