On finite powers of countably compact groups
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 617-626.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We will show that under ${M\kern -1.8pt A\kern 0.2pt }_{countable}$ for each $k \in \Bbb N$ there exists a group whose $k$-th power is countably compact but whose $2^k$-th power is not countably compact. In particular, for each $k \in \Bbb N$ there exists $l \in [k,2^k)$ and a group whose $l$-th power is countably compact but the $l+1$-st power is not countably compact.
Classification : 22A05, 54A35, 54B10, 54D20, 54H11
Keywords: countable compactness; ${M\kern -1.8pt A\kern 0.2pt }_{countable}$; topological groups; finite powers
@article{CMUC_1996__37_3_a18,
     author = {Tomita, Artur Hideyuki},
     title = {On finite powers of countably compact groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {617--626},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1996},
     mrnumber = {1426926},
     zbl = {0881.54022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a18/}
}
TY  - JOUR
AU  - Tomita, Artur Hideyuki
TI  - On finite powers of countably compact groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 617
EP  - 626
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a18/
LA  - en
ID  - CMUC_1996__37_3_a18
ER  - 
%0 Journal Article
%A Tomita, Artur Hideyuki
%T On finite powers of countably compact groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 617-626
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a18/
%G en
%F CMUC_1996__37_3_a18
Tomita, Artur Hideyuki. On finite powers of countably compact groups. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 617-626. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a18/