A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 589-594.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We answer a question of I. Juhasz by showing that MA $+ \neg$ CH does not imply that every compact ccc space of countable $\pi$-character is separable. The space constructed has the additional property that it does not map continuously onto $I^{\omega_1}$.
Classification : 54A25, 54A35, 54D30, 54G20
Keywords: ccc; non-separable; Hausdorff gap; $\pi$-character
@article{CMUC_1996__37_3_a15,
     author = {Bell, Murray},
     title = {A compact ccc non-separable space from a {Hausdorff} gap and {Martin's} {Axiom}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {589--594},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1996},
     mrnumber = {1426923},
     zbl = {0881.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/}
}
TY  - JOUR
AU  - Bell, Murray
TI  - A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 589
EP  - 594
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/
LA  - en
ID  - CMUC_1996__37_3_a15
ER  - 
%0 Journal Article
%A Bell, Murray
%T A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 589-594
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/
%G en
%F CMUC_1996__37_3_a15
Bell, Murray. A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 589-594. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/