A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 589-594
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We answer a question of I. Juhasz by showing that MA $+ \neg$ CH does not imply that every compact ccc space of countable $\pi$-character is separable. The space constructed has the additional property that it does not map continuously onto $I^{\omega_1}$.
Classification :
54A25, 54A35, 54D30, 54G20
Keywords: ccc; non-separable; Hausdorff gap; $\pi$-character
Keywords: ccc; non-separable; Hausdorff gap; $\pi$-character
@article{CMUC_1996__37_3_a15,
author = {Bell, Murray},
title = {A compact ccc non-separable space from a {Hausdorff} gap and {Martin's} {Axiom}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {589--594},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1996},
mrnumber = {1426923},
zbl = {0881.54004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/}
}
TY - JOUR AU - Bell, Murray TI - A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 589 EP - 594 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/ LA - en ID - CMUC_1996__37_3_a15 ER -
Bell, Murray. A compact ccc non-separable space from a Hausdorff gap and Martin's Axiom. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 589-594. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a15/