Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 537-556
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A priori estimates and strong solvability results in Sobolev space $W^{2,p}(\Omega)$, $1$ are proved for the regular oblique derivative problem $$ \begin{cases} \sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2u}{\partial x_i\partial x_j} =f(x) \text{ a.e. } \Omega \\ \frac{\partial u}{\partial \ell}+\sigma(x)u =\varphi(x) \text{ on } \partial \Omega \end{cases} $$ when the principal coefficients $a^{ij}$ are $V\kern -1.2pt MO\cap L^\infty$ functions.
Classification :
35J25
Keywords: oblique derivative; elliptic equation; non divergence form; $V\kern -1.2pt MO$ coefficients; strong solution
Keywords: oblique derivative; elliptic equation; non divergence form; $V\kern -1.2pt MO$ coefficients; strong solution
@article{CMUC_1996__37_3_a11,
author = {di Fazio, G. and Palagachev, D. K.},
title = {Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {537--556},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {1996},
mrnumber = {1426919},
zbl = {0881.35028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a11/}
}
TY - JOUR AU - di Fazio, G. AU - Palagachev, D. K. TI - Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 537 EP - 556 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a11/ LA - en ID - CMUC_1996__37_3_a11 ER -
%0 Journal Article %A di Fazio, G. %A Palagachev, D. K. %T Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients %J Commentationes Mathematicae Universitatis Carolinae %D 1996 %P 537-556 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a11/ %G en %F CMUC_1996__37_3_a11
di Fazio, G.; Palagachev, D. K. Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 537-556. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a11/