Finite canonization
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 445-456.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The canonization theorem says that for given $m,n$ for some $m^*$ (the first one is called $ER(n;m)$) we have for every function $f$ with domain $[{1,\dotsc,m^*}]^n$, for some $A \in [{1,\dotsc,m^*}]^m$, the question of when the equality $f({i_1,\dotsc,i_n}) = f({j_1,\dotsc,j_n})$ (where $i_1 \cdots i_n$ and $j_1 \cdots j_n$ are from $A$) holds has the simplest answer: for some $v \subseteq \{1,\dotsc,n\}$ the equality holds iff $\bigwedge_{\ell \in v} i_\ell = j_\ell$. We improve the bound on $ER(n,m)$ so that fixing $n$ the number of exponentiation needed to calculate $ER(n,m)$ is best possible.
Classification : 05C55, 05D10, 11B75
Keywords: Ramsey theory; Erdös-Rado theorem; canonization
@article{CMUC_1996__37_3_a1,
     author = {Shelah, Saharon},
     title = {Finite canonization},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {445--456},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {1996},
     mrnumber = {1426909},
     zbl = {0881.05097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a1/}
}
TY  - JOUR
AU  - Shelah, Saharon
TI  - Finite canonization
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 445
EP  - 456
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a1/
LA  - en
ID  - CMUC_1996__37_3_a1
ER  - 
%0 Journal Article
%A Shelah, Saharon
%T Finite canonization
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 445-456
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a1/
%G en
%F CMUC_1996__37_3_a1
Shelah, Saharon. Finite canonization. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 3, pp. 445-456. http://geodesic.mathdoc.fr/item/CMUC_1996__37_3_a1/