Set valued measures and integral representation
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 269-284.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The extension theorem of bounded, weakly compact, convex set valued and weakly countably additive measures is established through a discussion of convexity, compactness and existence of selection of the set valued measures; meanwhile, a characterization is obtained for continuous, weakly compact and convex set valued measures which can be represented by Pettis-Aumann-type integral.
Classification : 28A45, 28B20, 46G10
Keywords: set valued functions; set valued measures; Pettis-Aumann integral
@article{CMUC_1996__37_2_a6,
     author = {Xue, Xiaoping and Lixin, Cheng and Li, Goucheng and Yao, Xiaobo},
     title = {Set valued measures and integral representation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {269--284},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1996},
     mrnumber = {1399002},
     zbl = {0885.28008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/}
}
TY  - JOUR
AU  - Xue, Xiaoping
AU  - Lixin, Cheng
AU  - Li, Goucheng
AU  - Yao, Xiaobo
TI  - Set valued measures and integral representation
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 269
EP  - 284
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/
LA  - en
ID  - CMUC_1996__37_2_a6
ER  - 
%0 Journal Article
%A Xue, Xiaoping
%A Lixin, Cheng
%A Li, Goucheng
%A Yao, Xiaobo
%T Set valued measures and integral representation
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 269-284
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/
%G en
%F CMUC_1996__37_2_a6
Xue, Xiaoping; Lixin, Cheng; Li, Goucheng; Yao, Xiaobo. Set valued measures and integral representation. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 269-284. http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/