Set valued measures and integral representation
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 269-284
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The extension theorem of bounded, weakly compact, convex set valued and weakly countably additive measures is established through a discussion of convexity, compactness and existence of selection of the set valued measures; meanwhile, a characterization is obtained for continuous, weakly compact and convex set valued measures which can be represented by Pettis-Aumann-type integral.
Classification :
28A45, 28B20, 46G10
Keywords: set valued functions; set valued measures; Pettis-Aumann integral
Keywords: set valued functions; set valued measures; Pettis-Aumann integral
@article{CMUC_1996__37_2_a6,
author = {Xue, Xiaoping and Lixin, Cheng and Li, Goucheng and Yao, Xiaobo},
title = {Set valued measures and integral representation},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {269--284},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {1996},
mrnumber = {1399002},
zbl = {0885.28008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/}
}
TY - JOUR AU - Xue, Xiaoping AU - Lixin, Cheng AU - Li, Goucheng AU - Yao, Xiaobo TI - Set valued measures and integral representation JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 269 EP - 284 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/ LA - en ID - CMUC_1996__37_2_a6 ER -
%0 Journal Article %A Xue, Xiaoping %A Lixin, Cheng %A Li, Goucheng %A Yao, Xiaobo %T Set valued measures and integral representation %J Commentationes Mathematicae Universitatis Carolinae %D 1996 %P 269-284 %V 37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/ %G en %F CMUC_1996__37_2_a6
Xue, Xiaoping; Lixin, Cheng; Li, Goucheng; Yao, Xiaobo. Set valued measures and integral representation. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 269-284. http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a6/