Nowhere dense subsets and Booth's Lemma
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 391-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The following statement is proved to be independent from $[\operatorname{LB}+\neg \operatorname{CH}]$: \linebreak $(*)$ Let $X$ be a Tychonoff space with $c(X)\leq \aleph _0$ and $\pi w(X)\frak C$. Then a union of less than $\frak C$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.
Classification : 03E35, 03E50, 54A25, 54A35
Keywords: nowhere dense subset; Booth's Lemma; $\pi $-weight
@article{CMUC_1996__37_2_a15,
     author = {Malykhin, V. I.},
     title = {Nowhere dense subsets and {Booth's} {Lemma}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {391--395},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1996},
     mrnumber = {1399011},
     zbl = {0854.54005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a15/}
}
TY  - JOUR
AU  - Malykhin, V. I.
TI  - Nowhere dense subsets and Booth's Lemma
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 391
EP  - 395
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a15/
LA  - en
ID  - CMUC_1996__37_2_a15
ER  - 
%0 Journal Article
%A Malykhin, V. I.
%T Nowhere dense subsets and Booth's Lemma
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 391-395
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a15/
%G en
%F CMUC_1996__37_2_a15
Malykhin, V. I. Nowhere dense subsets and Booth's Lemma. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 391-395. http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a15/