Radical ideals and coherent frames
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 349-370.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It follows from Stone Duality that Hochster's results on the relation between spectral spaces and prime spectra of rings translate into analogous, formally stronger results concerning coherent frames and frames of radical ideals of rings. Here, we show that the latter can actually be obtained without Stone Duality, proving them in Zermelo-Fraenkel set theory and thereby sharpening the original results of Hochster.
Classification : 03E25, 06D05, 13A10, 13A15, 18B99, 54D80, 54H10, 54H99
Keywords: coherent frame or locale; radical ideal; prime spectrum; spectral space; support on a ring; Boolean powers
@article{CMUC_1996__37_2_a10,
     author = {Banaschewski, B.},
     title = {Radical ideals and coherent frames},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {349--370},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1996},
     mrnumber = {1399006},
     zbl = {0853.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a10/}
}
TY  - JOUR
AU  - Banaschewski, B.
TI  - Radical ideals and coherent frames
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 349
EP  - 370
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a10/
LA  - en
ID  - CMUC_1996__37_2_a10
ER  - 
%0 Journal Article
%A Banaschewski, B.
%T Radical ideals and coherent frames
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 349-370
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a10/
%G en
%F CMUC_1996__37_2_a10
Banaschewski, B. Radical ideals and coherent frames. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 349-370. http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a10/