Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 217-228.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper [5] L. Drewnowski and the author proved that if $X$ is a Banach space containing a copy of $c_0$ then $L_1({\mu },X)$ is {\it not} complemented in $cabv({\mu },X)$ and conjectured that the same result is true if $X$ is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if $\mu$ is a finite measure and $X$ is a Banach lattice not containing copies of $c_0$, then $L_1({\mu },X)$ is complemented in $cabv({\mu },X)$. Here, we show that the complementability of $L_1({\mu },X)$ in $cabv({\mu },X)$ together with that one of $X$ in the bidual $X^{\ast\ast}$ is equivalent to the complementability of $L_1({\mu },X)$ in its bidual, so obtaining that for certain families of Banach spaces not containing $c_0$ complementability occurs (Section 2), thanks to the existence of general results stating that a space in one of those families is complemented in the bidual. We shall also prove that certain quotient spaces inherit that property (Section 3).
Classification : 46B20, 46B30, 46E27, 46E40, 46L99
Keywords: spaces of vector measures and vector functions; complementability; Banach lattices; preduals of W$^\ast$-algebras; quotient spaces
@article{CMUC_1996__37_2_a1,
     author = {Emmanuele, G.},
     title = {Remarks on the complementability of spaces of {Bochner} integrable functions in spaces of vector measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1996},
     mrnumber = {1398997},
     zbl = {0855.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a1/}
}
TY  - JOUR
AU  - Emmanuele, G.
TI  - Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 217
EP  - 228
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a1/
LA  - en
ID  - CMUC_1996__37_2_a1
ER  - 
%0 Journal Article
%A Emmanuele, G.
%T Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 217-228
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a1/
%G en
%F CMUC_1996__37_2_a1
Emmanuele, G. Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/CMUC_1996__37_2_a1/