Booleanization of uniform frames
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 135-146.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Booleanization of frames or uniform frames, which is not functorial under the basic choice of morphisms, becomes functorial in the categories with weakly open homomorphisms or weakly open uniform homomorphisms. Then, the construction becomes a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with this, certain dual equivalences concerning uniform spaces and uniform frames arise.
Classification : 06D10, 06E15, 18A40, 18B30, 54B30, 54C10, 54E15
Keywords: Booleanization; uniform frame; uniform space; weakly open maps and homomorphisms
@article{CMUC_1996__37_1_a7,
     author = {Banaschewski, B. and Pultr, A.},
     title = {Booleanization of uniform frames},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1996},
     mrnumber = {1396165},
     zbl = {0848.06009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a7/}
}
TY  - JOUR
AU  - Banaschewski, B.
AU  - Pultr, A.
TI  - Booleanization of uniform frames
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 135
EP  - 146
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a7/
LA  - en
ID  - CMUC_1996__37_1_a7
ER  - 
%0 Journal Article
%A Banaschewski, B.
%A Pultr, A.
%T Booleanization of uniform frames
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 135-146
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a7/
%G en
%F CMUC_1996__37_1_a7
Banaschewski, B.; Pultr, A. Booleanization of uniform frames. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 135-146. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a7/