On the asymmetric divisor problem with congruence conditions
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 99-116
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A certain generalized divisor function $d^*(n)$ is studied which counts the number of factorizations of a natural number $n$ into integer powers with prescribed exponents under certain congruence restrictions. An $\Omega$-estimate is established for the remainder term in the asymptotic for its Dirichlet summatory function.
Classification :
11M06, 11M35, 11N37, 11N69, 11P21
Keywords: multidimensional asymmetric divisor problems
Keywords: multidimensional asymmetric divisor problems
@article{CMUC_1996__37_1_a5,
author = {K\"uhleitner, Manfred},
title = {On the asymmetric divisor problem with congruence conditions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {99--116},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1996},
mrnumber = {1396163},
zbl = {0852.11052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a5/}
}
TY - JOUR AU - Kühleitner, Manfred TI - On the asymmetric divisor problem with congruence conditions JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 99 EP - 116 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a5/ LA - en ID - CMUC_1996__37_1_a5 ER -
Kühleitner, Manfred. On the asymmetric divisor problem with congruence conditions. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 99-116. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a5/