Sequential closures of $\sigma$-subalgebras for a vector measure
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 91-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a locally convex space, $m: \Sigma \to X$ be a vector measure defined on a $\sigma$-algebra $\Sigma$, and $L^1(m)$ be the associated (locally convex) space of $m$-integrable functions. Let $\Sigma(m)$ denote $\{\chi_{{}_{E}}; E\in \Sigma\}$, equipped with the relative topology from $L^1(m)$. For a subalgebra $\Cal A \subseteq \Sigma$, let $\Cal A_\sigma$ denote the generated $\sigma$-algebra and $\overline{\Cal A}_s$ denote the {\sl sequential\/} closure of $\chi(\Cal A) = \{\chi_{{}_{E}}; E\in \Cal A\}$ in $L^1(m)$. Sets of the form $\overline{\Cal A}_s$ arise in criteria determining separability of $L^1(m)$; see [6]. We consider some natural questions concerning $\overline{\Cal A}_s$ and, in particular, its relation to $\chi(\Cal A_\sigma)$. It is shown that $\overline{\Cal A}_s \subseteq \Sigma (m)$ and moreover, that $\{E\in \Sigma; \chi_{{}_{E}} \in \overline{\Cal A}_s\}$ is always a $\sigma$-algebra and contains $\Cal A_\sigma$. Some properties of $X$ are determined which ensure that $\chi(\Cal A_\sigma) = \overline{\Cal A}_s$, for any $X$-valued measure $m$ and subalgebra $\Cal A \subseteq \Sigma$; the class of such spaces $X$ turns out to be quite extensive.
Classification : 28B05
Keywords: $\sigma $-subalgebra; vector measure; sequential closure
@article{CMUC_1996__37_1_a4,
     author = {Ricker, Werner J.},
     title = {Sequential closures of $\sigma$-subalgebras for a vector measure},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1996},
     mrnumber = {1396162},
     zbl = {0877.28011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/}
}
TY  - JOUR
AU  - Ricker, Werner J.
TI  - Sequential closures of $\sigma$-subalgebras for a vector measure
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 91
EP  - 97
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/
LA  - en
ID  - CMUC_1996__37_1_a4
ER  - 
%0 Journal Article
%A Ricker, Werner J.
%T Sequential closures of $\sigma$-subalgebras for a vector measure
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 91-97
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/
%G en
%F CMUC_1996__37_1_a4
Ricker, Werner J. Sequential closures of $\sigma$-subalgebras for a vector measure. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 91-97. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/