Sequential closures of $\sigma$-subalgebras for a vector measure
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 91-97
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $X$ be a locally convex space, $m: \Sigma \to X$ be a vector measure defined on a $\sigma$-algebra $\Sigma$, and $L^1(m)$ be the associated (locally convex) space of $m$-integrable functions. Let $\Sigma(m)$ denote $\{\chi_{{}_{E}}; E\in \Sigma\}$, equipped with the relative topology from $L^1(m)$. For a subalgebra $\Cal A \subseteq \Sigma$, let $\Cal A_\sigma$ denote the generated $\sigma$-algebra and $\overline{\Cal A}_s$ denote the {\sl sequential\/} closure of $\chi(\Cal A) = \{\chi_{{}_{E}}; E\in \Cal A\}$ in $L^1(m)$. Sets of the form $\overline{\Cal A}_s$ arise in criteria determining separability of $L^1(m)$; see [6]. We consider some natural questions concerning $\overline{\Cal A}_s$ and, in particular, its relation to $\chi(\Cal A_\sigma)$. It is shown that $\overline{\Cal A}_s \subseteq \Sigma (m)$ and moreover, that $\{E\in \Sigma; \chi_{{}_{E}} \in \overline{\Cal A}_s\}$ is always a $\sigma$-algebra and contains $\Cal A_\sigma$. Some properties of $X$ are determined which ensure that $\chi(\Cal A_\sigma) = \overline{\Cal A}_s$, for any $X$-valued measure $m$ and subalgebra $\Cal A \subseteq \Sigma$; the class of such spaces $X$ turns out to be quite extensive.
@article{CMUC_1996__37_1_a4,
author = {Ricker, Werner J.},
title = {Sequential closures of $\sigma$-subalgebras for a vector measure},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {91--97},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1996},
mrnumber = {1396162},
zbl = {0877.28011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/}
}
TY - JOUR AU - Ricker, Werner J. TI - Sequential closures of $\sigma$-subalgebras for a vector measure JO - Commentationes Mathematicae Universitatis Carolinae PY - 1996 SP - 91 EP - 97 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/ LA - en ID - CMUC_1996__37_1_a4 ER -
Ricker, Werner J. Sequential closures of $\sigma$-subalgebras for a vector measure. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 91-97. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a4/